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Abstract.
The extended and generalized finite element methods are reviewed with an emphasis

on their applications to problems in material science: (1) fracture (2) dislocations (3)
grain boundaries and (4) phases interfaces. These methods facilitate the modeling
of complicated geometries and the evolution of such geometries, particularly when
combined with level set methods, as for example in the simulation growing cracks or
moving phase interfaces. The state of the art for these problems is described along
with the history of developments.
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Figure 1. Three dimensional XFEM model of a crack. Displacements are magnified
200 times [2].

1. Introduction

The Extended Finite Element Method (XFEM) and the Generalized Finite Element

Method (GFEM) are versatile tools for the analysis of problems characterized by

discontinuities, singularities, localized deformations and complex geometries. These

methods can dramatically simplify the solution of many problems in material modeling,

such as

(i) the propagation of cracks

(ii) the evolution of dislocations

(iii) the modeling of grain boundaries

(iv) the evolution of phase boundaries

The advantage of these methods is that the finite element mesh can be completely

independent of the morphology of these entities. Two examples are shown in Fig. 1 and

2. The first is a crack in three dimensions. As can be seen, the crack surface and crack

front are completely independent of the mesh. This allows for the convenient simulation

of the evolution of the cracks because as a crack grows there is no need for remeshing.

The second example, shown in Fig. 2, is a micromodel of a polycrystal. Here the mesh

for the XFEM/GFEM model (Fig. 2a) is structured and is completely independent

of the location of the grain boundaries. In contrast, in the mesh for a standard FEM

model, shown in Fig. 2b, the element edges must conform to the grain boundaries and

duplicate nodes must be placed there. The advantages for modeling the complicated

grain boundary morphologies which occur in three dimensions can easily be imagined.
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XFEM/GFEM FEM

(a) (b)

Figure 2. Discretization of a grain boundary problems for a) an XFEM/GFEM model
with a structured (Cartesian) mesh and b) an FEM model.

Furthermore, when certain aspects of the solution of the field are known, as for

example the near-tip displacement fields for cracks, enrichment functions based on

these fields can be added to the approximation space. For example, for cracks and

dislocations in elastic media, the well-known asymptotic singular near-field solutions

can be added near crack fronts or dislocation cores as enrichments. This reduces the

need for significant h-refinement in these subdomains of the problem, especially in two-

dimensional models.

The major advantage of these methods for problems in materials science is the

simplification of the modeling of discontinuous phenomena. As already mentioned, in

conventional finite element methods, the mesh has to be constructed so that element

edges/faces coincide with the crack surface and nodes must be placed on each side of

the crack to allow material separation along the crack surface. The construction of such

meshes becomes quite difficult, especially in three dimensional problems, because the

mesh also has to account for other features of the model, such as grain boundaries or

inclusions. In XFEM, the introduction of a discontinuous displacement field along the

crack surface is accomplished by simply introducing additional basis functions to the

approximation. Furthermore, as described later, when XFEM is combined with level

sets, the entire representation of the feature, such as the geometry and the displacement

field of a crack, can be constructed in terms of nodal values at the nodes of the original

mesh. Similarly, the modeling of phase boundaries and other discontinuities is facilitated

by these methods. These advantages are particularly important when the geometry

evolves, as in a growing crack or moving phase boundaries.

The extended and generalized finite element methods are basically identical

methods: the name generalized finite element method (GFEM) was adopted by the

Texas school [71, 72, 37] in 1995-1996 and the name extended finite element method

(XFEM) was coined by the Northwestern school [10, 75] in 1999. XFEM was developed
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for discontinuities, such as cracks, and used local enrichments. The first works in GFEM

involved global enrichments of the approximation space; however, as early as 2000, local

enrichment for singularities at sharp corners were also developed [34].

XFEM/GFEM can be used with both structured and unstructured meshes.

Structured meshes are appealing for many studies in materials science, where the

objective is to determine the properties of a unit cell of the material. Unstructured

meshes, on the other hand, tend to be widely used for analysis of engineering structures

and components since it is often desirable to conform the mesh to the external boundaries

of the component, although some methods under development today are able to treat

even complicated geometries with structured meshes [15].

This paper is aimed at providing a unified view of the extended/generalized finite

element method with an emphasis on formulations of interest in materials modeling

problems. In addition to summarizing the literature, this paper aims to describe the

latest forms of these methods. Therefore, in many cases we will not describe the

developments in historical order, but arrange the material according to the problems

addressed with the methods described as they are currently used, followed by a summary

of the pertinent literature.

The development of XFEM/GFEM was an outgrowth of the extensive research in

meshfree methods, Belytschko et al. [13]. Many of the techniques that are used in

XFEM and GFEM are directly related to techniques previously developed in meshfree

methods. Therefore we will also point out the relevant literature in meshfree methods.

Previous surveys of XFEM have been given by Karihaloo and Xiao [61] and by Abdelaziz

and Hamouine [1]; a mathematical survey of XFEM/GFEM was given by Babuska et

al. [6] and a recent review of XFEM for fracture is given by Rabczuk et al. [85]. A

monograph on XFEM focused on fracture has also recently been published [77].

We will start by describing the concept of a partition of unity, which underpins both

the XFEM/GFEM methods. Next, we will discuss the application of XFEM/GFEM to

stationary and growing cracks, since these particular applications incorporate most of

the features found in many other applications. We will then examine the application

of these methods to dislocations, inclusions, phase boundaries and grain boundaries.

Subsequently, we will further discuss the application of these methods to cohesive cracks

and dynamic fracture and we will discuss some of the implementation issues.

2. Partition of Unity enriched finite elements

The foundation of these methods is the partition of unity concept for enriching finite

elements or mesh-free approximations [72, 37]. A partition of unity in a domain Ω is a

set of functions ϕI (x) such that
∑

∀I
ϕI (x) = 1, ∀x ∈ Ω (1)

The property of a partition of unity exploited in XFEM/GFEM is that any function

Ψ (x) can be reproduced by a product of the partition of unity functions with Ψ (x).
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Furthermore, when the sum is modified by introducing parameters qI , the enrichment

function can be adjusted by these parameters by using the approximation

uh (x) =
∑

∀I
NI (x)uI

︸ ︷︷ ︸
uFE

+
∑

∀I
ϕI (x) Ψ (x)qI

︸ ︷︷ ︸
uenr

(2)

where NI are the standard FEM or meshfree shape functions and uI are the standard

nodal degrees of freedom. The first part of the right hand side of (2) is the standard finite

element approximation, whereas the second part is the partition of unity enrichment; in

the mathematical literature the second part is often called the ansatz. The nodal values

qI are unknown parameters that adjust the enrichment so that it best approximates

the solution at hand ( Ψ (x) is often based on asymptotic solutions that are not exact

solutions). Thus the ansatz need not be precisely the local solution for the problem at

hand. Another advantage of this approximation structure is that when the functions

ϕI (x) have compact support (i.e. are only nonzero over a small subdomain of the

problem), then the discrete equations for the system will be sparse. By contrast, directly

adding an enrichment function to the approximation would lead to nonsparse discrete

equations, which are computationally much more expensive.

Note that by the partition of unity property, when qI = 1 and uI = 0, the function

Ψ (x) is reproduced exactly by the approximation (2). It should be pointed out that

the shape functions for the standard approximation and the enrichment need not be the

same functions, as indicated in the above, but generally the same functions are used,

i.e. generally ϕI (x) = NI (x).

All Lagrangian finite element shape functions satisfy the partition of unity property,

since this property is essential for convergence and passing the patch test because the

partition of unity property enables a finite element approximation to represent rigid

body translation exactly. Similarly, many meshfree approximations also satisfy this

property.

The introduction of the partition of unity concept to enrich solution spaces of

numerical solutions to partial differential equations is usually attributed to Melenk and

Babuška [72], where it was called the Partition of Unity Method (PUM). The PUM is

the progenitor of both XFEM and GFEM. Some of the applications envisioned in that

paper are singularities at corners, boundary layers, and improved approximations for the

Laplace and Helmholtz equations by a harmonic ansatz. They also give a convergence

proof of the method. Earlier, some of the same concepts were proposed by Babuška et

al. [7]. The partition of unity concept was introduced in meshless methods by Duarte

and Oden [37].

An even earlier development of the same basic idea can be found in Shi [89] where

it was called the manifold method. A more accessible (though still somewhat confusing)

description of the manifold method (now called the finite cover method) can be found

in Terada et al. [103]. This method is closely related to the PUM and as is a recent

method for cracks developed by Hansbo and Hansbo [53], which is discussed in Section

11.
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3. Cracks

We begin with a description of the application of XFEM to cracks. Consider a finite

element model of a cracked body, as shown in Fig. 3. Let the set of all nodes in the

finite element mesh be denoted by S, the set of nodes of elements around the crack tip

(or crack front in three dimensions) be denoted by SC and the set of nodes of elements

cut by the crack, i.e. the discontinuity, but not in SC be denoted by SH . The set of

elements with nodes in SC can be selected by the user. Usually one element, as shown

at crack tip B in Fig. 3, suffices, but some improvements in accuracy can be obtained

by using several elements, as shown at crack tip A in Fig. 3. Nodes in SC and SH will

be referred to as tip enriched and step enriched nodes, respectively, and collectively as

enriched nodes.

Let the crack surface be given by an implicit function description, i.e. a level

set, f (x) = 0 (describing the crack in this manner enables the method to treat

discontinuities such as cracks without any supplementary data other than at nodal

points, as shown later) and let f (x) have opposite signs on the two sides of the crack.

In most applications, ϕI = NI and we will use this. The XFEM displacement field for

a crack is

uh (x) =
∑

∀I
NI (x)uI +

∑
J∈SH

NJ (x) [H (f(x))−H (f(xJ))]q0
J

+
∑

j

∑
K∈SC

NK (x)
[
Ψ(j) (x)−Ψ(j) (xK)

]
q

(j)
K (3)

where H(·) is the Heaviside step function given by

H (z) =

{
1, z > 0

0, otherwise
(4)

and where Ψ(j) is a set of enrichment functions which approximate the near tip

behaviour, q
(j)
I are the enrichment coefficients which are additional unknowns at the

nodes and xJ is the position of node J .

It should be stressed that (3) is a local partition of unity in contrast to the global

form in (2), i.e. the enrichment is added only where it is useful. This substantially

improves the computational efficiency because in general far fewer unknowns are

introduced by the enrichment than in a global partion of unity. There are some

difficulties in the blending elements around tip enriched elements (indicated by cross-

hatching in Fig. 3 in local partitions of unity methods, but these are now resolved, as

discussed in Section 9.

It is worthwhile to illustrate how the discontinuity is introduced by this

approximation. Since f(x) defines the crack and since f(x) changes sign along the

crack, it follows the H(f(x)) is discontinuous along the crack. We can furthermore
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A

B

: Nodes in SC

: Nodes in SH

: Crack

Figure 3. An arbitrary crack line (dashed line) in a structured mesh with step enriched
(light gray) and tip enriched (purple) elements. Nodes in sets SC and SH are denoted
by red squares and blue circles, respectively.

show that for elements cut by the crack, the jump in the displacement field across the

crack Γc is

[|uh (x) |]Γc =
∑

J∈SH

NJ (x)q0
J , x ∈ Γc (5)

Thus the magnitude of the crack-opening displacement directly depends on q0
J .

Note that in (3) the enrichment function is shifted so that the product of the

shape function NI and the enrichment function vanish at each node, as proposed in

Belytschko et al. [15]. Consequently, the step function enrichment for the discontinuity

will vanish at the edges of all elements not crossed by the discontinuity and uh(xJ) = uJ .

Therefore, only those elements that are crossed by the discontinuity need to be treated

differently. In addition, this shifting simplifies the blending of enriched elements with

standard elements as described later. It is sometimes stated that this shifting enables

one to satisfy displacement boundary conditions, just as in the standard finite element

method, by setting the nodal displacements appropriately, but this is not strictly true:

the displacement boundary conditions will only be met at the nodes when this is done.

For cracks in elastic materials, the crack tip enrichment functions Ψ(j) are based

on the asymptotic solution of Williams [114]. As shown in [44] in the context of

meshfree methods, an effective near tip enrichment can be constructed from the following

functions

{Ψi}4
i=1 =

√
r {cos(θ/2), sin(θ/2), sin(θ/2) sin(θ), cos(θ/2) sin(θ)} . (6)

Recently enrichments for orthotropic materials have been given in [4] and a further

discussion of their application can be found in [77]. The four enrichment functions for

orthotropic materials are only a little more complicated than the branch functions (6)

and are given by

{Ψi}4
i=1 =

√
r
{

cos(θ1/2), cos(θ2/2)
√

g2(θ), sin(θ1/2)
√

g1(θ), sin(θ2/2)
√

g2(θ)
}

(7)
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where gj(θ) and θj are functions and angles defined by relatively simple formulas.

Furthermore, they show that these enrichments provide good accuracy for a variety

of orthotropic fracture problems.

3.1. Discrete equations

The discrete XFEM equations are obtained by the substitution of (3) into the principle

of virtual work. Assuming that the system is linear leads to the following system of

discrete equations




Kuu Ku0 · · · Ku4

Ku0> K00 · · · K04

...
...

. . .
...

Ku4> K14> · · · K44








du

d0

...

d4





=





f ext

Q0

...

Q4





(8)

where the vector of standard finite element degrees of freedom is du = {u1, · · · ,un}>
and the vectors of enriched degrees of freedom are d0 = {q0

1, · · · ,q0
nH
}>, and di =

{qi
1, · · · ,qi

nC
}>. The scalars n, nH and nC are the number of nodes in S, SH and SC ,

respectively. The stiffness matrices are given by

Kuu
IJ =

∫

Ω

BICBJdΩ (9)

Kuj
IJ =

∫

Ω

BICB(j)
J dΩ, j ∈ {0, 1, 2, 3, 4} (10)

Kij
IJ =

∫

Ω

B(i)
I CB(j)

J dΩ, i, j ∈ (0, 1, 2, 3, 4) (11)

where C is the elasticity matrix and BI is the standard finite element strain-displacement

matrix which in two dimensions is

BI =




NI,x 0

0 NI,y

NI,y NI,x


 , ∀I (12)

where a comma denotes differentiation. The enriched strain-displacement matrices

associated with the enriched part of the displacement approximation are

B0
I =




(NIH(f(x))−H(f(xI))),x 0

0 (NIH(f(x))−H(f(xI))),y

(NIH(f(x))−H(f(xI))),y (NIH(f(x))−H(f(xI))),x


 , ∀I ∈ SH (13)

and for j ∈ {1, 2, 3, 4}

Bj
I =




(NIΨj(f(x))−Ψj(f(xI))),x 0

0 (NIΨj(f(x))−Ψj(f(xI))),y

(NIΨj(f(x))−Ψj(f(xI))),y (NIΨj(f(x))−Ψj(f(xI))),x


 , ∀I ∈ SC (14)
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The Cauchy stress is

σ = C

(∑

∀I
BIuI +

∑
J∈SH

B0
Jq

0
J +

∑
K∈SC

4∑
j=1

Bj
Kqj

K

)
(15)

In the absence of body forces, the force vectors due to external loads are

f ext
I =

∫

Γt

NI t̄dΓ, ∀I (16)

Q0
I =

∫

Γt

NI (H(f(x))−H(f(xI))) t̄dΓ, I ∈ SH (17)

Qj
I =

∫

Γt

NI (Ψj(f(x))−Ψj(f(xI))) t̄dΓ, I ∈ SC and j ∈ {1, 2, 3, 4} (18)

where t̄ are the applied tractions to the domain boundary Γt.

Two important characteristics of the XFEM/GFEM discrete equations are worth

noting:

(i) The B-matrices associated with the enriched degrees of freedom (13-14) are

discontinuous within elements cut by the crack. Therefore the integrands of

the stiffness matrices (10-11) and the force vectors (17-18) are discontinuous.

Furthermore, the B-matrix (14) is singular at the crack tip (crack front in three

dimensions). So, standard Gauss quadrature is inadequate for evaluating these

integrals. Quadrature in XFEM/GFEM is further discussed in Section 8.

(ii) The sets SH and SC are small subsets of the total number of nodes. Therefore, the

integrals (10-11) and (17-18) are only non-zero over a small number of elements.

3.2. Literature Review on Crack

The local partition of unity concept was first applied to fracture in Belytschko and

Black [10]. The tip enrichment (6) was used for the entire crack, with a mapping to

deal with small deviations from a straight crack. In Moës et al. [75] and Dolbow et

al. [31] the concept of using a Heaviside enrichment in conjunction with a neartip

enrichment as described above (3) was introduced along with the name of the method,

XFEM. This enables arbitrary curved cracks to be handled with ease independent of the

geometry of the mesh. The methodology was extended by Daux et al. [28] to branched

and intersecting cracks by superposing several Heaviside enrichment functions at the

junctions.

XFEM was extended to three dimensional crack problems in Sukumar et al. [101].

In [101] the same singular enrichment functions as used in two dimensions problems were

used (6), but they were expressed in terms of polar coordinates of the plane normal to

the crack front. This approach works remarkably well.

Duarte et al. [35] developed a three dimensional method for dynamic crack

propagation in the GFEM framework with the discontinuity enrichment based on the
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visibility criterion [63]. They used singular enrichments near the crack front based on the

first order term for the asymptotic solutions for straight cracks. Recent improvements

and applications in three dimensional XFEM/GFEM can be found in Areias and

Belytschko [2] and Gasser and Holzapfel [47].

Karihaloo et al. [68, 116] studied a neartip enrichment basis that includes higher

order terms of the asymptotic expansion of the crack tip field in two dimensions. The

enrichments are expressed in terms of the mode I and mode II stress intensity factors,

KI and KII, so the solution immediately provides these stress intensity factors. This

neartip enrichment has proved to be very effective for extracting accurate SIFs in two

dimensions; however, applications to three dimensions have not been made.

A study of quadratic elements for brittle fracture has been presented by Stazi et

al. [93], where curved cracks were considered. It was reported that the enrichment uenr

should be constructed with linear shape functions even when the standard FE part of

the approximation uFE is constructed with quadratic shape functions. This result is

related to the blending of enriched and unenriched elements and has been also confirmed

by Legay et al. [66] for spectral finite elements.

Legay et al. [66] studied the modeling of discontinuities in functions and gradients

with spectral finite elements. A noteworthy finding was that the difficulties with

blending decrease as the order of the element increases, so for higher order elements

there is little need for special treatment of the blending elements.

The effects of the size of the crack tip enrichment domain has been studied by

Ventura et al. [109], Laborde et al. [64] and Béchet et al. [8]. They all observed that

although in the original XFEM papers only the nodes nearest to a singularity were

enriched, enriching a fixed geometric area around the singularity significantly improves

the rate of convergence as the mesh is refined.

Convergence is studied in [64], where the role of the blending region between

enriched and unenriched elements on the convergence rate is investigated. These results

are revisited by Chahine et al. [21] who introduces the concept of a cut-off or weight

function for the enrichment. This concept has been lately fruitfully applied to solve

blending issues, see Section 9.

Several works have considered the determination of stress intensity factors. Since

the early works, the stress intensity factors have been computed by the domain form of

the J-integral, [75, 32, 52, 79]. Liu et al. [68] proposed a direct evaluation of the stress

intensity factors, based on enrichment functions expressed in terms of stress intensity

factors. A study of the performance of the contour integral, the cutoff function and the

J-integral method can be found in [84]. Robust methods for evaluation of the J-integral

have been described in Legrain et al. [67]. In Duarte et al. [35] a least squares fit of the

GFEM stresses to the asymptotic crack tip fields was used to extract stress intensity

factors.
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3.3. Cohesive cracks

Cohesive cracks can be treated within the XFEM framework. Well and Sluys [112]

used the step function enrichment to solve delamination problems in composites with a

cohesive law. The crack tip progressed element by element.

To achieve good accuracy and the ability to deal with crack fronts within elements,

special enrichments have to be developed. In Moës and Belytschko [74], the following

enrichments basis for two dimensional crack tips was found to be effective

{Ψi}3
i=1 =

{
r sin(θ/2), r

3
2 sin(θ/2), r2 sin(θ/2)

}
. (19)

Zi and Belystchko [120] presented a new crack tip element for cohesive cracks based

on the sign function (generalized Heaviside step function). The crack tip can be located

anywhere within an element. However the crack tip opening is linear, so it requires

great resolution for elastic cracks and substantial resolution for cohesive cracks

In [70] Mariani and Perego proposed to reproduce the cusp-like shape of the process

zone by introducing a polynomial ramp multiplied by the generalized Heaviside step-

function. Applications of cohesive crack modeling in functionally graded materials have

been presented by Comi and Mariani [26] and in concrete by Unger et al. [104]. Cohesive

models in the XFEM/GFEM framework have been discussed by de Borst et al. [29, 30].

Other interesting developments for cohesive cracks can be found in [112, 11, 5].

4. Dislocations

Dislocations can be treated by XFEM by methods that are similar to those for cracks.

These methods are based on the Volterra concept of a dislocation: the body is cut

across a surface, the two sides of the surface are displaced relative to each other by

the Burgers vector, and the surfaces are glued together. This problem can be posed

as the analysis of a body containing an embedded surface of discontinuity where the

relative displacements (or jump in displacements) across the surface of discontinuity

are prescribed according to the Burgers vector b of the dislocation. XFEM has been

applied to the mesoscale modeling of dislocations in two dimensions [109, 50, 12, 49],

three dimensions [49, 82] and in thin shells such as carbon nanotubes [82].

To describe the XFEM approach to dislocations, we define the geometry of the

dislocation by level sets, as we did for cracks. A dislocation loop is represented by two

level sets, f(x) and g(x), as shown in Fig. 4. The glide plane is defined by the zero

contour of f(x) and the dislocation line is the intersection of f(x) = 0 and g(x) = 0.

The sense of the dislocation line is then ζ = ∇f ×∇g.

The approximations for a linear isotropic domain containing nd Voltera dislocations

is

uh (x) = uFE(x) +
nd∑

α=1

uD
α (x) (20)
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ẽ
1

ẽ
2

ẽ
3

g(x) = 0

f(x) = 0

n = ∇f

ΓD

ΩD

Figure 4. Level set description of a dislocation loop

where

uD
α (x) = bα

∑

I∈Sjump
α

NI(x) (H(fα(x)gα(x))−HαI)

+ bα
∑

I∈Score
α

NI(x) (ucore
α (fα(x), gα(x))− ucore

αI ) (21)

where bα is the Burgers vector of dislocation α, bα is the magnitude of bα,

ucore
α (fα(x), gα(x)) is the asymptotic solution for a dislocation on a slip plane with

normal ∇fα and Burgers vector b−1
α bα and ucore

αI = ucore(fα(xI), gα(xI)). The function

ucore
α (fα(x), gα(x)) is given in [49, 82]. The set Score

α is the set of nodes within a certain

radius of dislocation core α and Sjump
α is the set of all nodes not in Score

α with supports

cut by fα(x) = 0 and gα(x) < 0. The geometry of the discontinuity associated with the

dislocation is completely independent of the FE mesh, so dislocations can be arbitrarily

oriented with respect to the mesh.

The displacement approximation (21) closely resembles that for linear elastic cracks

(3). By enriching nodes near the dislocation core with ucore(f(x), g(x)), the XFEM

solution can accurately capture the core singularity, which is analogous to the tip

enrichment for cracks (6). Slip far from the dislocation core is captured by the Heaviside

step function enrichment H(z), which is the same enrichment used to model crack

opening away from the crack tip.

The discrete equations for dislocations have the same form as those for linear elastic

cracks, i.e. (8-16), but since the Burgers vector b is prescribed, the only free degrees

of freedom are those of the standard finite element problem uI . Therefore the discrete

equations for these dislocation methods are of the form

Kuudu = f ext −
1∑

i=0

Kuiqi (22)



Belytschko, Gracie, Ventura: A Review of XFEM/GFEM for Material Modelling 13

Furthermore, the stiffness matrix is independent of the number, orientation and

location of the dislocations. This is advantageous in dislocation dynamics simulations

because Kuu needs only to be computed and triangulated once at the beginning of a

simulation, leading to significant savings in computations. In addition, since the effect of

the dislocation appears only as a nodal force, the dislocation model is easily incorporated

into commercial FE codes such as Abaqus and Ansys.

Core enrichment functions are not readily available for problems involving nonlinear

or anisotropic materials or for large displacement problems. Dislocations in such

problems can be modeled by using only the step function enrichment. The displacement

field approximation is then given by

u (x) = uFE(x) + b
∑

I∈Sjump

NI(x) (Ψ(f(x), g(x))−ΨI) , (23)

where Sjump is the set of nodes of elements cut by the plane defined by f(x) = 0 and

g(x) < 0, ΨI = Ψ(f(xI), g(xI)) and

Ψ (f(x), g(x)) = G (g(x)) H (f(x)) . (24)

where G(z) is a function which specifies the magnitude of the discontinuity across the slip

plane. For a Volterra model, G(z) = H(−z), but this displacement field is incompatible

at the center of the core. This incompatibility can be eliminated by regularizing the step

function as it approaches the core. It is also possible to circumvent this difficulty by a

Peierls-Nabarro core model, which is accomplished by letting G(z) = −π−1 arctan (z/a),

where a is a parameter related to the size of the core. G(z) can also be chosen as a

spline which has been fitted to an atomistic simulation.

The approximation (23) requires finer mesh resolution than a displacement field

that includes core enrichment (20) for comparable accuracy. To illustrate this, Fig. 5

compares the x-direction stress for a dislocation loop in an infinite, linear, isotropic

domain for models with and without core enrichment. It can be seen that with core

enrichment a much coarser mesh of 30× 30 elements provides about the same accuracy

as a 130 × 130 element mesh that only employs the step enrichment. Of course, core

enrichment is only feasible if near field solutions are available, although they can often

be constructed from finite element or atomistic solutions.

In dislocation dynamics simulations, the Peach-Koehler force which drives the

motion of dislocations must be computed at each step of the simulation for each

dislocation segment. For linear problems which use the approximation (20), the driving

force on a dislocation segment β whose core is located at xβ can be computed by the

Peach-Koehler formula

FPK (xβ) = ζ (xβ)× (σ̃ (xβ) · bβ) (25)

where

σ̃ (xβ) = σ
(
uFE (xβ)

)
+

∑
α∈Aβ

σ
(
uD

α (xβ)
)

(26)
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Figure 5. Comparison of the accuracy of the dislocation approximation with and
without core enrichment for the problem of a circular dislocation loop of radius
r = 0.25µm and Burgers vector b = (5Å, 0, 0) in a 1µm × 1µm × 1µm cubic domain
[82]. The mesh size is noted in the legend.

and Aβ is a small subset of all dislocations enrichment functions that are nonzero at xβ,

i.e. Aβ = {α|α 6= β, ∃I ∈ Score
α ,xβ ∈ supp (NI)}.

Equation (26) is similar to that used in superposition based dislocation models

[105, 80], but it is more efficient since it only involves a sum over a small subset of

the dislocations in the domain, i.e. those dislocations whose domains of enrichment

includes the location of the dislocation core for which the Peach-Koehler force is

evaluated. In the XFEM dislocation model long-range interactions as well of the image

stresses are captured by the standard FE part of the stress σ
(
uFE (xβ)

)
. In classical

superposition methods [105, 80], the Peach-Koehler force computation requires a sum

over all dislocation segments in the model; the evaluation of this sum takes a significant

fraction of the total computation time.

The Peach-Koehler force which determines dislocation motion can also be computed

by the J-integral, and this approach appears to be necessary when the singular core

enrichment is not included [12]. This is because the total stress field becomes singular

at the core and the stress from other dislocations cannot be decoupled from the singular

part of the total stress.

A major advantage of the XFEM approach to modeling dislocations, in comparison

to methods based on analytic solutions or boundary integral methods, is its ability

to deal with problems with complex geometry. Both the combined step and core

enriched (20) and the step enriched (23) models are applicable to arbitrary geometries,

i.e. they have the full flexibility of standard finite element methods. Moreover, the

step function enrichment (23) is applicable to nonlinear and anisotropic problems.

Some of the versatility of these methods is illustrated by the application of XFEM
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Figure 6. XFEM simulation of a threading dislocation in an SiGe thin film [82].
Dashed line denotes the dislocation line. a) Dislocation and domain geometry. b) The
σxx stress resulting from the dislocation.

to dislocations in thin anisotropic films shown in Figure 4. XFEM has also been applied

to dislocations in carbon nanotubes. The dislocation enrichment functions for carbon

nanotubes are constructed by mapping the two dimensional enrichment functions (20)

onto a cylindrical manifold. The results obtained by this method compare well with

fully atomistic simulations [82]. Some of the difficulties of accurately modeling core

behavior in anisotropic materials can be over come by coupling the XFEM dislocation

model with an atomistic model at the dislocation cores, as in Gracie and Belytschko

[48].

5. Grain Boundaries

The complex geometries of grain boundaries can easily be modeled by XFEM/GFEM.

The advantage of these methods lies in the fact that the mesh need not have any

relationship to the geometry of the grain boundaries, whereas in a standard finite element

method, element edges must be aligned with grain boundaries. This was illustrated in

Fig. 2 in two dimensions.

The XFEM approximations for multibody problems with sliding interfaces were

first constructed by Belytschko et al. [15] for the analogous problem of jointed rock by

using the Heaviside step function enrichment. Let the surface of grain i and its volume

be defined by f (i) (x) = 0 and f (i) (x) > 0, respectively. Several types of enrichment

have been used: with relative normal displacements allowed on the boundary or only

relative slip allowed. When only slip is allowed, the Heaviside step function is applied

only to the tangential component, and the enrichment is

uenr (x) =
∑

i

e
(i)
t

(
P (i) (x)

) ∑
I

NI (x)
[
H

(
f (i) (x)

)−H
(
f (i) (xI)

)]
q
(i)
I (27)

where e
(i)
t (x̄) is a unit vector tangent to the contour f (i) (x) = 0 at x̄ and P (i) (x) is a

operator that projects x onto the contour f (i) (x) = 0. If we take e
(α)
t

(
P (α) (x)

)
q
(α)
I = bα

then we obtain the dislocation model (23) presented in the previous section.
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If normal separation between grains is to be modeled along the grain boundary by

a cohesive law [119], then the displacement field for a grain boundary is identical to

that for cracks (3), but without the crack tip enrichment. In addition, a penalty force

or some other constraint technique must be applied to prevent interpenetration along

the grain boundaries, see for example [33].

An alternative technique has been developed in the context of GFEM by Simone

et al. [90] which employs the enrichment

uenr (x) =
∑

I

NI (x)

nG∑
α

Hα (x)uαI (28)

where nG is the number of grains and

Hα (x) =

{
1, if x is in grain α

0, otherwise

}
(29)

The basis of this field is identical to the XFEM basis for discontinuities. The

advantage of this form of the enrichment is that junctions involving three or more

boundaries can be handled more conveniently, since the form (27) requires additional

basis functions at junctions, see [15, 28]. The enrichment (28) includes one linear

depended function for every node with a support cut by a grain; however, this

linear dependence can be removed using a modification of (28), as described in [90].

Simone et al. [90] formulated the approximation for discontinuities in the total field

but only applied the approximation to problems where the tangential component is

unconstrained.

6. Phase Interfaces

XFEM and GFEM have been used to solve problems of evolving interfaces; in these

applications they are often combined with level set methods for tracking interfaces. On

interfaces, in contrast to the problems described so far, the gradient of the primary

variable (often the displacement) is discontinuous but the variable itself is continuous.

A typical application is the modeling of inclusions. In standard finite element methods,

it is necessary that element edges coincide with the phase interfaces because otherwise

the accuracy of the finite element solution is significantly compromised. Many problems

have been solved with finite element models where the properties of elements on the

interface are determined according to a Voigt law of homogenization [122]. However,

convergence studies show that these methods do not converge at the optimal rate.

The simplest enrichment function used by the XFEM to introduce a discontinuity

into the gradient of the approximation is the absolute value function (also called the

ridge or tent function). Let f(x) be a signed distance function to the interface; in this

case the enrichment is

uenr (x) =
∑

I

NI(x)|f(x)|qI (30)
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i.e. the absolute value of the level set function is used as the enrichment. This idea of

introducing a ridge to model discontinuous gradients was first proposed in the context

of meshfree methods by Krongauz and Belytschko [62]. Extensions to finite elements in

terms of level set functions were developed in [15, 98]. Note that for this enrichment,

the use of level sets is almost indispensable, since it is difficult to define a ridge function

without them.

The ridge enrichment is more troublesome than the Heaviside enrichment because

even with shifting, it does not vanish at the edges of the elements crossed by the

discontinuity. Furthermore, parasitic behavior is introduced by the approximation in

the blending elements unless special techniques are used. These issues are discussed in

detail in Section 9.

Modeling of the evolution of phase boundaries is most conveniently handled by

combining XFEM with level set methods. Such applications were first proposed in

Chessa and Belytschko [24, 23, 22]. The use of level sets is already implicit in (30);

some more details are given in the next Section.

Approximations for gradient discontinuities within elements can also be constructed

by constraining discontinuous approximations. For example, if we start with the

approximation for a crack (3) without tip enrichment and then constrain the

displacement field to be continuous along the line f(x) = 0 (i.e the discontinuity), the

resulting field will be continuous but its gradient will be discontinuous along f(x) = 0.

The continuity constraint can be imposed either by Lagrange multipliers or by Nitsche’s

method [78, 60]. This type of approximation was first proposed by Hansbo and Hansbo

[53].

Merle and Dolbow [73] have considered thermal and phase change problems in one

dimension by these methods. They use the Heaviside step function enrichment and then

apply the continuity constraint as part of the solution. They report that the accuracy

of this approach is significantly better than the ridge function approach. Ji et al. [59]

have proposed XFEM methods for phase transitions using the fast marching method;

Hermitian polynomials were used for the dependent variable of the primary problem.

Zabaras et al. [118] have used XFEM in conjunction with level sets and the ridge

function to solve several interesting problems in dendritic solidification.

7. Level Sets

The Level Set Method, Sethian [88] and Osher and Fedkiw [81], has become a key

ingredient of XFEM. It allows for the complicated geometry of a feature such as a crack

to be described by a simple functional representation. In addition, level sets allow the

enrichment functions to be evaluated in a straightforward manner.

For example with a level set description of a crack, the crack surface can be defined

by scalar values at the finite element nodes and by the FE shape functions, i.e. a level
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set f(x, t) can be defined as

f(x, t) =
∑

I

NI(x)fI(t) (31)

The evolution of the surfaces can then be accomplished by solving a hyperbolic

evolution equation that governs the level sets, which is

∂f(x)

∂t
+ v(x) ·∇f(x) = 0 (32)

where v is the velocity of the level set field. This velocity field must often be determined

by projecting the velocity of the surface f (x) = 0 throughout the domain. The Fast

Marching Method has been found to be an extremely efficient method for velocity

projection in three-dimensional fracture simulations [97] and in applications of evolving

biofilm interfaces [38].

The level set approach can dramatically simplify the solution of many problems,

such as interface evolution, dislocation evolution and crack growth. However, it should

be mentioned that in the application of level sets to cracks, the update of level sets still

poses difficulties. One difficulty arises because the crack surface must be frozen once

it develops. This cannot be easily handled under the conventional level set framework,

though some progress is being made. Another difficulty is that the finite element meshes

used for solution of the field equations are often inadequate for accurately solving the

hyperbolic equation (32), so another mesh, often a finite difference mesh, is used for the

level set update.

Applications of level sets and XFEM to crack growth in two dimensions were first

described by Stolarska et al. [94] and Belytschko et al. [15] and for three dimensional

cracks in [76, 52]. The issue of freezing the level set for cracks was addressed in

[52], although not completely satisfactorily. The hyperbolic equations for the level

set update were solved by the characteristic Galerkin method. In Sukumar et al. [99]

a fast marching method was developed for updating the level sets of cracks in three

dimensions. A geometric/vector point of view of the level set description and evolution of

cracks was introduced in Ventura et al. [107]. This method addresses the irreversibility

of crack surfaces by using geometric updates; it also eliminates the need for solving

differential equation (32) for the evolution of the level set. These ideas have been

further developed by Sukumar et al. [97] where a faster and more reliable level set

update is described. Applications of XFEM and level sets to problems with multiple

intersecting and branching cracks can be found in Budyn et al. [20], Zi et al. [121] and

Loehnert and Belytschko [69]. Other relevant papers are [39] and [58].

8. Quadrature in XFEM/GFEM

An important issue in the implementation of XFEM and GFEM is the quadrature of

the weak form. In standard finite elements, the evaluation of the element stiffness and

the other terms of the weak form usually requires the quadrature of functions that are
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polynomials, which is easily accomplished with low order Gauss quadrature. When the

approximation space is enriched by singular or discontinuous functions, these quadrature

techniques need to be modified because inaccurate quadrature can lead to inaccuracy

and poor convergence of the XFEM/GFEM solutions [95, 96, 10, 75].

Several different approaches have been used in the literature to perform this task.

Some of the methods are:

• Higher order Gauss quadrature, which has been demonstrated to perform quite

poorly [95];

• Adaptive quadrature for singular functions [95];

• Subdomain quadrature, in which the element is subdivided into quadrature

subdomains with boundaries aligned with the discontinuity (e.g. the crack faces or

an interface between materials) where a fixed order Gauss rule is used [10, 75]. For

singular enrichments this method requires special quadrature rules.

• Tranformation to a line integral or surface integral in two and three dimensions,

respectively [108].

Special methods for cracks, based on a polar mapping of the integrand functions

and domain, have been proposed by Laborde et al. [64] and Béchet et al. [8] and

have been named almost polar integration and singular mapping, respectively. The

first maps an ordinary quadrature rule on a square into a triangular domain, while the

second exploits the structure of the enrichment functions to define a quadrature rule

on a triangle. These two quadrature rules perform much better than standard Gauss

quadrature, but they require a subdivision of the element containing the crack tip into

triangles with vertices coincident to the crack tip.

A method for the step function enrichment that avoids subdividing the elements

cut by the discontinuity was introduced by Ventura [106]. Here the enrichment functions

are mapped to equivalent polynomials that can be easily integrated by a standard Gauss

rule on the entire element domain. These polynomials are defined so to give the exact

result, using coefficients that are function of the location of the discontinuity in the

element. A related approach has been proposed by Holdych et al. [55]. Here, starting

with a given integration rule, quadrature weights are found, depending on the position

of the discontinuity inside the element. The methods proposed in [106, 55] gives the

exact element stiffness, so it follows that the weights determined in [55] will coincide

with the values of the equivalent polynomials [106] at the quadrature points.

Ventura et al. [108] reduced the computational cost of the quadrature of singular

enrichment functions for enrichment functions that satisfy the equilibrium equations.

The divergence theorem was used to transform the element domain integral of the weak

form into a boundary integral over the element edges. This approach was used for crack

and dislocation problems, and proved quite effective.
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9. Blending of enriched and non-enriched elements

Local Partition of Unity enrichments as introduced in Belytschko and Black [10] and

Moës et al. [75] have the advantage that they substantially reduce the number of

variables in the global problem compared to full domain enrichments and improve the

conditioning of the numerical problem. It should be stressed that there are no difficulties

in the blending of the shifted Heaviside enrichment, because that enrichment vanishes

along the edges of the elements cut by the discontinuity. On the other hand for other

enrichments, such as ridge enrichments or tip enrichments, the transition from enriched

to unenriched elements requires some care.

Consider a four node quadrilateral blending element (like the cross-hatched elements

in Fig 3) adjacent to a tip-enriched element. While all of the nodes of the enriched

element are enriched, only two of the nodes of the blending element are enriched. As

a consequence in the blending element, the shape functions NK(x), K ∈ SC , no longer

form a partition of unity. This can lead to errors in the blending elements and decreases

in the rate of convergence.

In Sukumar et al. [98], errors in the blending elements were found to degrade the

convergence rate of solutions with the ridge enrichment function (30). A modification

of the ridge enrichment function was proposed that improved the convergence rate. The

issue of blending was further investigated by Chessa et al. [25] who observed that the

errors are caused by parasitic terms in the approximation space of the blending elements.

They developed an assumed strain method whereby the parasitic strains in the blending

elements are eliminated. The drawback of this approach is that special assumed strain

elements need to be developed that depend on the enrichment and element types.

Another approach for circumventing the blending problem is to join the enriched

and unenriched sudomains by interface conditions. Following this viewpoint, Gracie et

al. [51] introduced a patch-based version of the discontinuous Galerkin formulation,

which enforces continuity between the enriched and unenriched patches by an internal

penalty method. The resulting formulation, called DG-XFEM, is more accurate than

the standard XFEM and achieves optimal convergence rates. Unlike assumed strain

blending, this method does not require the development of new elements for the blending

region.

Recently an effective and simple approach has been proposed by Fries [45] who used

a linearly decreasing weight function for the enrichment in the blending elements. This

approach allows one to obtain a conforming approximation and to eliminate partially

enriched elements, so that the partition of unity property is everywhere satisfied. The

idea of a weighting the enrichment was also presented in [21] but with no reference

to blending and also in [46] for governing the transition between finite elements and a

moving least squares approximation. This approach has been extended in [108], where a

more general ramp function was used and the influence of the weight function derivatives

has been studied, as well as different enrichments. Blending the enrichment functions

with a ramp function has proved very effective, simple to implement and appears to be
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a very satisfactory solution to blending difficulties.

10. Localization, damage and transition to fracture

The partition of unity concept has also been used for nonlocal and gradient models.

Patzak and Jirasek [83] applied the XFEM step enrichment to model narrow damage

localization zones. Damage was modeled by enriching the displacement field with a

set of regularized Heaviside step functions, representing different internal length scales

arranged in geometrical progression. The displacement is therefore continuous in the

damaged zone, but the strains can be large and with a very steep gradient.

Simone et al. [91] developed an implicit gradient-enhanced continuum damage

model enriched with a discontinuous interpolations activated at high damage to simulate

material fracture. This approach was motivated by the observation that nonlocal

continuum damage models, in either integral or differential form, deteriorate close to

failure as these models are unable to represent discrete failure surfaces. As pointed out

by the authors, the shortcomings of their approach are the incorrect energy dissipation

at the onset of fracture and discontinuities in the response due to the sharp variation of

the non-local interaction domains.

An energy conservation criterion has been proposed for mode I cracks by Comi et

al. [27], where the transition from damage to fracture is defined through an energy

balance in such a way that the residual energy in the damage band is transferred to the

cohesive crack interface. They present an estimate of the minimum number of elements

required to resolve the localization band for a given accuracy by perturbation analysis.

In the framework of the regularized step function approach introduced by Patzak

and Jirasek [83], Benvenuti et al. [17] proposed a different mechanical model where the

bulk strain field and the localized strain field are assumed to govern distinct mechanically

uncoupled mechanisms. A bounded spring-like model is assumed for the localized

constitutive law, so that its mechanical work converges to the traction−separation work

when the regularization parameter vanishes, i.e. at fracture. The integration of the very

steep gradients arising when the regularization parameter vanishes, i.e. close to fracture,

is approached by the equivalent polynomial technique, so that the element stiffness is

correctly evaluated with low order Gauss quadrature [106].

11. Other Forms of Discontinuous Approximations

Hansbo and Hansbo [53] proposed a different form for representing displacement

discontinuities. In their method, when a crack crosses an element e another element

ē is superimposed on e. In elements cut by the crack, the standard FE displacement

field is replaced by

uh (x) =
∑
I∈e

ue
IN

e
I (x) H (f (x)) +

∑
I∈ē

uē
IN

ē
I (x) (1−H (f (x))) (33)
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This corresponds to adding an extra element (and extra nodes) for every element

that is crossed by a discontinuity. Integration of the weak form over these elements still

requires special algorithms, as described in Section 8, since the step function appears in

the displacement field.

Areias and Belytschko [3] showed that Hansbo and Hansbo’s approximation basis

is a linear combination of the XFEM basis for discontinuities. So the performance is

identical; the choice depends primarily on implementational aspects, and there do not

seem to be particularly strong arguments in favor of either approach, though the XFEM

form is more compatible with singularity enrichments.

Previously, Iarve [57] introduced an element based on polynomial B-splines for the

step function discontinuity. Iarve’s displacement field is of the form

uh (x) = H̄ (f (x))u(1) (x) + (1− H̄ (f (x)))u(2) (x) + u(3) (x) (34)

where H̄ is a regularized step function,

u(1) (x) =
∑
I∈Ωe

NI (x)u
(1)
I (35)

u(2) (x) =
∑
I∈Ωe

NI (x)u
(2)
I (36)

u(3) (x) =
∑

I∈Ω/Ωe

NI (x)u
(3)
I (37)

(38)

and Ωe is the set of nodes of elements cut by the discontinuity.

An advantage of this method is that the step function is regularized by a spline,

so that traditional Gaussian quadrature can be used. Issues related to quadrature in

partition of unity methods were described in Section 8. Note that Iarve’s form [57] is

identical to that of Hansbo and Hansbo [53], if the step function is not regularized.

Fries and Belytschko [46] proposed a discontinuity enrichment that does not require

additional degrees of freedom at nodes whose elements are crossed by the discontinuity.

An approximation space consisting of discontinuity enriched moving least squares [14]

is constructed near discontinuities. The method is more complex than the standard

XFEM enrichment for discontinuites, but its avoidance of extra degrees of freedom is

sometimes an advantage.

The XFEM approach to fracture analysis is closely related to the s-method of

Fish [41, 40, 43]. In the s-method, a mesh of elements is superimposed on the regular

mesh. The superimposed elements are meshed so that they conform to the shape of the

crack and double nodes are included on the crack surface to represent the discontinuity.

Quarter point singular elements are used at the crack tip. These methods have the same

quadrature difficulties as XFEM.

Lee et al. [65] combined XFEM with the s-method of Fish [41] for modeling

of stationary and growing cracks. Quarter points elements were superimposed on a



Belytschko, Gracie, Ventura: A Review of XFEM/GFEM for Material Modelling 23

background mesh but in contrast to Fish [41], the rest of the discontinuity was described

by the step function enrichment.

11.1. Dynamic Fracture and other Topics

The simulation of dynamic fracture by PUM for softening material which transition to

a discontinuity was proposed by Wells et al. [111, 113]. A similar method based on

XFEM was developed in Belytschko et al. [11] where a cohesive zone model used to

model the crack tip behavior and a loss of hyperbolicity criterion was used to advance

the crack. A special element was developed for partially cracked elements, but no tip

enrichment was used. Réthoré et al. [87, 86] have developed energy conserving time

integration schemes for propagating cracks modeled by XFEM.

An alternative method for dynamic crack propagation based on the Hansbo and

Hansbo [53] approach was developed in Song et al. [92]. It was called the phantom

node method, since an overlaid element and ”phantom nodes” were added to elements

that cracked. They have developed efficient one-point quadrature rules for four-node

quadrilaterals that avoids subdomain integration with little loss in accuracy. Shear

bands were also treated by the XFEM method in that paper.

Partition of unity enrichments have also been used in conjunction with multiscale

approaches and homogenization theories, for both traditional small displacement/strain

elasticity [42] and for nonlinear problems [43]. Two overlaid models were used, one

defined on the large scale and one defined for small scale features like cracks, coupled by

boundary conditions. It can be seen as an application of the partition of unity concept

to the s-version of the finite element method [41]. A similar approach has been recently

proposed for GFEM by Duarte and Kim [36].

XFEM has recently been applied to concurrent continuum-atomistic simulations of

cracks and dislocations by Gracie and Belytschko [48]. The introduction of XFEM into

the multiscale framework results in a substantial reduction in the number of atomistic

degrees of freedom compared to a standard bridging domain method framework [16, 117].

XFEM has been applied to bimaterial problems by Sukumar et al. [100], Hettich

et al. [54] and Huynh and Belytschko [56]. In the latter, both the crack and the

interface were described by level sets. Béchet et al. [9] have applied XFEM to cracks in

piezoelectric materials. Enrichment functions with variable parameters were introduced

in [110]. Here the enrichment function is adapted locally to the physics of a problem by

determining the parameters giving the best solution. The parameters are determined

iteratively starting from trial parameters, and the solutions are determined iteratively

using an a posteriori error estimate.

Bordas et al. [19] have developed object-oriented libraries for XFEM. The

implementation of XFEM within a general purpose FEM code has been discussed by

Sukumar and Prévost [102].

An important improvement that is needed in XFEM is adaptivity. For this purpose,

error estimators will need to be developed. Bordas and Duflot [18] have developed error



Belytschko, Gracie, Ventura: A Review of XFEM/GFEM for Material Modelling 24

estimators based on L2 projections.

12. Conclusions

The major concepts of XFEM/GFEM have been reviewed along with their history

and their major applications. The most mature field of applications is the modeling

of stationary and evolving cracks. These applications have reached a high degree of

robustness and are now being incorporated into general purpose codes such as LS-DYNA

and ABAQUS. Applications to grain boundaries and dislocations are still embryonic,

although these applications share a similar conceptual and implementational framework.

The payoffs in applying these technologies to grain boundaries would be quite substantial

because they would facilitate the study of real grain boundary configurations in three

dimensions, the effects of anisotropy, nonlinearities, etc.

The combination of XFEM/GFEM with level sets has also enhanced their

capabilities, since this makes possible the description of cracks, dislocations, grain

boundaries and phase interfaces strictly in terms of nodal data. Furthermore, it enables

one to harness the powerful level set methods that have been developed to track the

evolution of these surfaces.

The XFEM/GFEM framework also provides a powerful tool for enriching solution

spaces with information from asymptotic solutions and other knowledge of the physics

of the problem. This has proved very useful for elastic cracks and dislocations, where

near-field solutions can be embedded by the partition of unity method to tremendously

increase the accuracy of relatively coarse meshes. It also offers possibilities in treating

phenomena such as surface effects in nanomechanics, void growth, subscale models of

interface behavior, etc.

Thus in total, the XFEM/GFEM methods have tremendously enhanced the power

of finite element methods for many of the problems of interest in the mechanics of

materials. The development XFEM/GFEM is still in its early stages, and many

promising applications remain to be made.
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[20] E. Budyn, G. Zi, N. Moës, and T. Belytschko. A method for multiple crack growth in brittle



Belytschko, Gracie, Ventura: A Review of XFEM/GFEM for Material Modelling 26

materials without remeshing. Int. J. Numer. Meth. Engng, 61:1741–1770, 2004.
[21] E. Chahine, P. Laborde, and Y. Renard. A quasi-optimal convergence result for fracture

mechanics with XFEM. Comptes rendus-Mathématique, 342(7):527–532, 2006.
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[95] T. Strouboulis, I. Babuška, and K. Copps. The design and analysis of the generalized finite
element method. Computer Methods in Applied Mechanics and Engineering, 181:43–69, 2000.
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